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684 | CH.6 MODELS OF EXPLANATION

Prediction is, of course, as essential to everyday life as it is to science.
Even the most trivial acts we perform during the day are based on pre-
dictions. You turn a doorknob. You do so because past observations of
facts, together with universal laws, lead you to believe that turning the
knob will open the door. You may not be conscious of the logical schema
involved—no doubt you are thinking about other things—but all such
deliberate actions presuppose the schema. There is a knowledge of specific
facts, a knowledge of certain observed regularities that can be expressed
as universal or statistical laws and provide a basis for the prediction of
unknown facts. Prediction is involved in every act of human behavior that
involves deliberate choice. Without it, both science and everyday life
would be impossible.

CAarL G. HEMPEL

Two Basic Types
of Scientific Explanation

1 |  Deductive-Nomological Explanation

In his book, How We Think,! John Dewey describes an observation he
made one day when, washing dishes, he took some glass tumblers out of
the hot soap suds and put them upside down on a plate: he noticed that
soap bubbles emerged from under the tumblers’ rims, grew for a while,
came to a standstill, and finally receded inside the tumblers. Why did this
happen? The explanation Dewey outlines comes to this: In transferring a
tumbler to the plate, cool air is caught in it; this air is gradually warmed
by the glass, which initially has the temperature of the hot suds. The
warming of the air is accompanied by an increase in its pressure, which
in turn produces an expansion of the soap film between the plate and the
rim. Gradually, the glass cools off, and so does the air inside, with the
result that the soap bubbles recede.

This explanatory account may be regarded as an argument to the
effect that the event to be explained (let me call it the explanandum-event)
was to be expected by reason of certain explanatory facts. These may be
divided into two groups: (i) particular facts and (ii) uniformities expressed
by general laws. The first group includes facts such as these: the tumblers
had been immersed, for some time, in soap suds of a temperature consid-
erably higher than that of the surrounding air; they were put, upside down,
on a plate on which a puddle of soapy water had formed, providing a
connecting soap film, etc. The second group of items presupposed in the
argument includes the gas laws and various other laws that have not been
explicitly suggested concerning the exchange of heat between bodies of
different temperature, the elastic behavior of soap bubbles, etc. If we imag-

From “Explanation in Science and History,” in Frontiers of Science and Philoso-
phy, ed. R. G. Colodny (London and Pittsburgh: Allen and Unwin and University
of Pittsburgh Press, 1962), 9-19, 32,
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ine these various presuppositions explicitly spelled out, the idea suggests
itself of construing the explanation as a deductive argument of this form:

<D> C]} CZ7 vt Ck

L17L27"',Lr

E
Here, C,, C,, . . ., C, are statements describing the particular facts in-
voked; L,, L, . . ., L, are general laws: jointly, these statements will be

said to form the explanans. The conclusion E is a statement describing
the explanandum-event; let me call it the explanandum-statement, and let
me use the word “explanandum” to refer to either E or to the event de-
scribed by it. ' }

The kind of explanation thus characterized 1 will call deductive-
nomological explanation; for it amounts to a deductive subsumption of the
explanandum under principles which have the character of general laws:
it answers the question “Why did the explanandum event occur?” by ShO\’V~
ing that the event resulted from the particular circumstances specified in
C,, C,, . . ., Cy in accordance with the laws L, L, . . ., L. This
conception of explanation, as exhibited in schema (D), has therefore been
referred to as the covering law model, or as the deductive model, of
explanation.?* '

A good many scientific explanations can be regarded as ded'uctlve-
nomological in character. Consider, for example, the explanation (?f
mirror-images, of rainbows, or of the appearance that a spoon handle is
bent at the point where it emerges from a glass of water: in all these cases,
the explanandum is deductively subsumed under the laws of reflection
and refraction. Similarly, certain aspects of free fall and of planetary mo-
tion can be accounted for by deductive subsumption under Galileo’s or
Kepler's laws.

In the illustrations given so far the explanatory laws had, by and large,
the character of empirical generalizations connecting different observable
aspects of the phenomena under scrutiny: angle of incidence with angle
of reflection or refraction, distance covered with falling time, etc. But
science raises the question “why?” also with respect to the uniformities
expressed by such laws, and often answers it in basically the same manner,
namely, by subsuming the uniformities under more inclusive laws, gnd
eventually under comprehensive theories. For example, the question,
“Why do Galileo’s and Kepler’s laws hold?” is answered by showing that
these laws are but special consequences of the Newtonian laws of motion

. M “ ?>
* The phrase covering law model is appropriate because general laws must “cover
or subsume the explanandum. The adjective nomological in the phrase deductive-
: e
nomological is derived from the Greek word nomos, meaning “law.
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and of gravitation; and these, in turn, may be explained by subsumption
under the more comprehensive general theory of relativity. Such sub-
sumption under broader laws or theories usually increases both the breadth
and the depth of our scientific understanding. There is an increase in
breadth, or scope, because the new explanatory principles cover a broader
range of phenomena; for example, Newton’s principles govern free fall on

“the earth and on other celestial bodies, as well as the motions of planets,

comets, and artificial satellites, the movements of pendulums, tidal
changes, and various other phenomena. And the increase thus effected in
the depth of our understanding is strikingly reflected in the fact that, in
the light of more advanced explanatory principles, the original empirical
laws are usually seen to hold only approximately, or within certain limits.
For example, Newton’s theory implies that the factor g in Galileo’s law,
s = %2 gt?, is not strictly a constant for free fall near the surface of the
earth; and that, since every planet undergoes gravitational attraction not
only from the sun, but also from the other planets, the planetary orbits
are not strictly ellipses, as stated in Kepler’s laws,

One further point deserves brief mention here. An explanation of a
particular event is often conceived as specifying its cause, or causes. Thus,
the account outlined in our first illustration might be held to explain the
growth and the recession of the soap bubbles by showing that the phe-
nomenon was caused by a rise and a subsequent drop of the temperature
of the air trapped in the tumblers. Clearly, however, these temperature
changes provide the requisite explanation only in conjunction with certain
other conditions, such as the presence of a soap film, practically constant
pressure of the air surrounding the glasses, etc. Accordingly, in the context
of explanation, a cause must be allowed to consist in a more or less com-
plex set of particular circumstances; these might be described by a set of
sentences: Gy, Gy, . . ., Gy, And, as suggested by the principle “Same
cause, same effect,” the assertion that those circumstances jointly caused
a given event—described, let us say, by a sentence E—implies that when-
ever and wherever circumstances of the kind in question occur, an event
of the kind to be explained comes about. Hence, the given causal expla-
nation implicitly claims that there are general laws—such as L, L,, . . .,
L, in schema (D)—by virtue of which the occurrence of the causal an-
tecedents mentioned in C;, C,, . . ., C, is a sufficient condition for the
occurrence of the event to be explained. Thus, the relation between
causal factors and effect is reflected in schema (D): causal explanation is
deductive-nomological in character. (However, the customary formula-
tions of causal and other explanations often do not explicitly specify all
the relevant laws and particular facts: to this point, we will return later.)

The converse does not hold: there are deductive-nomological expla-
nations which would not normally be counted as causal. For one thing,
the subsumption of laws, such as Galileo’s or Kepler’s laws, under more
comprehensive principles is clearly not causal in character: we speak of
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causes only in reference to particular facts or events, and not in reference
to universal facts as expressed by general laws. But not even all deductive-
nomological explanations of particular facts or events will qualify as causal;
for in a causal explanation some of the explanatory circumstances will

temporally precede the effect to be explained: and there are explanations

of type (D) which lack this characteristic. For example, the pressure which
a gas of specified mass possesses at a given time might be explained by
reference to its temperature and its volume at the same time, in conjunc-
tion with the gas law which connects simultaneous values of the three
parameters.’

In conclusion, let me stress once more the important role of laws in
deductive-nomological explanation: the laws connect the explanandum
event with the particular conditions cited in the explanans, and this is
what confers upon the latter the status of explanatory (and, in some cases,
causal) factors in regard to the phenomenon to be explained.

2 |  Probabilistic Explanation

In deductive-nomological explanation as schematized in (D), the laws and
theoretical principles involved are of strictly universal form: they assert that
in all cases in which certain specified conditions are realized an occur-
rence of such and such a kind will result; the law that any metal, when
heated under constant pressure, will increase in volume, is a typical ex-
ample; Galileo’s, Kepler’s, Newton’s, Boyle’s, and Snell’s laws, and many
others, are of the same character.

Now let me turn next to a second basic type of scientific explanation.
This kind of explanation, too, is nomological, i.e., it accounts for a given
phenomenon by reference to general laws or theoretical principles; but
some or all of these are of probabilistic-statistical form, i.e., they are, gen-
erally speaking, assertions to the effect that if certain specified conditions
are realized, then an occurrence of such and such a kind will come about
with such and such a statistical probability.

For example, the subsiding of a violent attack of hay fever in a given
case might well be attributed to, and thus explained by reference to, the
administration of 8 milligrams of chlor-trimeton. But if we wish to connect
this antecedent event with the explanandum, and thus to establish its ex-
planatory significance for the latter, we cannot invoke a universal law to
the effect that the administration of 8 milligrams of that antihistamine will
invariably terminate a hay fever attack: this simply is not so. What can be
asserted is only a generalization to the effect that administration of the
drug will be followed by relief with high statistical probability, i.e., roughly
speaking, with a high relative frequency in the long run. The resulting
explanans will thus be of the following type:
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John Doe had a hay fever attack and took 8 milligrams of chlor-
trimeton.

"The probability for subsidence of a hay fever attack upon administra-
tion of 8 milligrams of chlor-trimeton is high.

Clearly, this explanans does not deductively imply the explanandum,
“John Doe’s hay fever attack subsided”; the truth of the explanans makes
the truth of the explanandum not certain (as it does in a deductive-

nomological explanation) but only more or less likely or, perhaps “prac-
tically” certain.

Reduced to its simplest essentials, a probabilistic explanation thus
takes the following form:
Fi
(P) p(O,F) is very high } makes very likely
Oi

The explanandum, expressed by the statement “Oi,” consists in the
fact that in the particular instance under consideration, here called i (e.g,,
John Doe’s allergic attack), an outcome of kind O (subsidence) occurred.
This is explained by means of two explanans-statements. The first of these,
“Fi,” corresponds to C,, C,, . . ., G, in (D); it states that in case i, the
factors I (which may be more or less complex) were realized. The second
expresses a law of probabilistic form, to the effect that the statistical prob-
ability for outcome O to occur in cases where F is realized is very high
(close to 1). The double line separating explanandum from explanans is
to indicate that, in contrast to the case of deductive-nomological expla-
nation, the explanans does not logically imply the explanandum, but only
confers a high likelihood upon it. The concept of likelihood here referred
to must be clearly distinguished from that of statistical probability, sym-
bolized by “p” in our schema. A statistical probability is, roughly speaking,
the long-run relative frequency with which an occurrence of a given kind
(say, F) is accompanied by an “outcome” of a specified kind (say, O). Our
likelihood, on the other hand, is a relation (capable of gradations) not
between kinds of occurrences, but between statements. The likelihood
referred to in (P) may be characterized as the strength of the inductive
support, or the degree of rational credibility, which the explanans confers
upon the explanandum; or, in Carnap’s terminology, as the logical, or
inductive, (in contrast to statistical) probability which the explanandum

possesses relative to the explanans.

Thus, probabilistic explanation, just like explanation in the manner

of schema (D), is nomological in that it presupposes general laws; but
because these laws are of statistical rather than of strictly universal form,
the resulting explanatory arguments are inductive rather than deductive
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in character. An inductive argument of this kind explains a given phenom-
enon by showing that, in view of certain particular events and certain
statistical laws, its occurrence was to be expected with high logical, or
inductive, probability.

By reason of its inductive character, probabilistic explanation differs
from its deductive-nomological counterpart in several other important re-
spects; for example, its explanans may confer upon the explanandum a
more or less high degree of inductive support; in this sense, probabilistic
explanation admits of degrees, whereas deductive-nomological explanation
appears as an either-or affair: a given set of universal laws and particular
statements either does or does not imply a given explanandum statement.
A fuller examination of these differences, however, would lead us far afield
and is not required for the purposes of this paper.*

One final point: the distinction here suggested between deductive-
nomological and probabilistic explanation might be questioned on the
ground that, after all, the universal laws invoked in a deductive explanation
can have been established only on the basis of a finite body of evidence,
which surely affords no exhaustive verification, but only more or less strong
probability for it; and that, therefore, all scientific laws have to be regarded
as probabilistic. This argument, however, confounds a logical issue with
an epistemological one: it fails to distinguish properly between the claim
made by a given law-statement and the degree of confirmation, or proba-
bility, which it possesses on the available evidence. It is quite true that
statements expressing laws of either kind can be only incompletely con-
firmed by any given finite set—however large—of data about particular
facts; but law-statements of the two different types make claims of different
kind, which are reflected in their logical forms: roughly, a universal law-
statement of the simplest kind asserts that all elements of an indefinitely
large reference class (e.g., copper objects) have a certain characteristic
(e.g., that of being good conductors of electricity); while statistical law-
statements assert that in the long run, a specified proportion of the
members of the reference class have some specified property. And our
distinction of two types of law and, concomitantly, of two types of scientific
explanation, is based on this difference in claim as reflected in the differ-
ence of form.

The great scientific importance of probabilistic explanation is elo-
quently attested to by the extensive and highly successful explanatory use
that has been made of fundamental laws of statistical form in genetics,
statistical mechanics, and quantum theory.
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3 |  Elliptic and Partial Explanations:
Explanation Sketches

As I mentioned earlier, the conception of deductive-nomological expla-
nation reflected in our schema (D) is often referred to as the covering law
model, or the deductive model, of explanation: similarly, the conception
underlying schema (P) might be called the probabilistic or the inductive-
statistical, model of explanation. The term “model” can serve as a useful
reminder that the two types of explanation as characterized above consti-
tute ideal types or theoretical idealizations and are not intended to reflect
the manner in which working scientists actually formulate their explana-
tory accounts. Rather, they are meant to provide explications, or rational
reconstructions, or theoretical models, of certain modes of scientific ex-
planation.

In this respect our models might be compared to the concept of math-
ematical proof (within a given theory) as construed in meta-mathematics.
This concept, too, may be regarded as a theoretical model: it is not
intended to provide a descriptive account of how proofs are formulated in
the writings of mathematicians: most of these actual formulations fall short
of rigorous and, as it were, ideal, meta-mathematical standards. But the
theoretical model has certain other functions: it exhibits the rationale of
mathematical proofs by revealing the logical connections underlying the
successive steps; it provides standards for a critical appraisal of any pro-
posed proof constructed within the mathematical system to which the
model refers; and it affords a basis for a precise and far-reaching theory of
proof, provability, decidability, and related concepts. I think the two mod-
els of explanation can fulfill the same functions, if only on a much more
modest scale. For example, the arguments presented in constructing the
models give an indication of the sense in which the models exhibit the
rationale and the logical structure of the explanations they are intended
to represent.

I now want to add a few words concerning the second of the functions
just mentioned; but I will have to forgo a discussion of the third.

When a mathematician proves a theorem, he will often omit mention
of certain propositions which he presupposes in his argument and which
he is in fact entitled to presuppose because, for example, they follow read-
ily from the postulates of his system or from previously established theo-
rems or perhaps from the hypothesis of his theorem, if the latter is in
hypothetical form; he then simply assumes that his readers or listeners will
be able to supply the missing items if they so desire. If judged by ideal
standards, the given formulation of the proof is elliptic or incomplete; but
the departure from the ideal is harmless: the gaps can readily be filled in.
Similarly, explanations put forward in everyday discourse and also in sci-
entific contexts are often elliptically formulated. When we explain, for
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example, that a lump of butter melted because it was put into a hot frying
pan, or that a small rainbow appeared in the spray of the lawn sprinkler
because the sunlight was reflected and refracted by the water droplets, we
may be said to offer elliptic formulations of deductive-nomological expla-
nations; an account of this kind omits mention of certain laws or particular
facts which it tacitly takes for granted, and whose explicit citation would
yield a complete deductive-nomological argument.

In addition to elliptic formulation, there is another, quite important,
respect in which many explanatory arguments deviate from the theoretical
model. It often happens that the statement actually included in the ex-
planans, together with those which may reasonably be assumed to have
been taken for granted in the context at hand, explain the given expla-
nandum only partially, in a sense which I will try to indicate by an ex-
ample. In his Psychopathology of Everyday Life, Freud offers the following
explanation of a slip of the pen that occurred to him: “On a sheet of paper
containing principally short daily notes of business interest, I found, to my
surprise, the incorrect date, ‘Thursday, October 20th,’ bracketed under
the correct date of the month of September. It was not difficult to explain
this anticipation as the expression of a wish. A few days before I had
returned fresh from my vacation and felt ready for any amount of profes-
sional work, but as yet there were few patients. On my arrival I had found
a letter from a patient announcing her arrival on the 20th of October. As
I wrote the same date in September I may certainly have thought ‘X ought
to be here already; what a pity about that whole month!,” and with this
thought I pushed the current date a month ahead.”

Clearly, the formulation of the intended explanation is at least incom-
plete in the sense considered a moment ago. In particular, it fails to men-
tion any laws or theoretical principles in virtue of which the subconscious
wish, and the other antecedent circumstances referred to, could be held
to explain Freud’s slip of the pen. However, the general theoretical con-
siderations Freud presents here and elsewhere in his writings suggests
strongly that his explanatory account relies on a hypothesis to the effect
that when a person has a strong, though perhaps unconscious, desire, then
if he commits a slip of pen, tongue, memory, or the like, the slip will take
a form in which it expresses, and perhaps symbolically fulfills, the given
desire.

Even this rather vague hypothesis is probably more definite than what
Freud would have been willing to assert. But for the sake of the argument
let us accept it and include it in the explanans, together with the particular
statements that Freud did have the subconscious wish he mentions, and
that he was going to commit a slip of the pen. Even then, the resulting
explanans permits us to deduce only that the slip made by Freud would,
in some way or other, express and perhaps symbolically fulfill Freud’s sub-
conscious wish. But clearly, such expression and fulfillment might have
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been achieved by many other kinds of slip of the pen than the one actually
committed.

In other words, the explanans does not imply, and thus fully explain,
that the particular slip, say s, which Freud committed on this occasion,
would fall within the narrow class, say W, of acts which consist in writing
the words “Thursday, October 20th”; rather, the explanans implies only
that s would fall into a wider class, say F, which includes W as a proper
subclass, and which consists of all acts which would express and symbol-
ically fulfill Freud’s subconscious wish in some way or other.

The argument under consideration might be called a partial expla-
nation: it provides complete, or conclusive, grounds for expecting s to be
a member of F, and since W is a subclass of F, it thus shows that the
explanandum, i.e., s falling within W, accords with, or bears out, what is
to be expected in consideration of the explanans. By contrast, a deductive-
nomological explanation of the form (D) might then be called complete
since the explanans here does imply the explanandum.

Clearly, the question whether a given explanatory argument is com-
plete or partial can be significantly raised only if the explanandum sen-
tence is fully specified; only then can we ask whether the explanandum
does or does not follow from the explanans. Completeness of explanation,
in this sense, is relative to our explanandum sentence. Now, it might seem
much more important and interesting to consider instead the notion of a
complete explanation of some concrete event, such as the destruction of
Pompeii, or the death of Adolf Hitler, or the launching of the first artificial
satellite: we might want to regard a particular event as completely ex-
plained only if an explanatory account of deductive or of inductive form
had been provided for all of its aspects. This notion, however, is self-
defeating; for any particular event may be regarded as having infinitely
many different aspects or characteristics, which cannot all be accounted
for by a finite set, however large, of explanatory statements.

In some cases, what is intended as an explanatory account will depart
even further from the standards reflected in the model schemata (D) and
(P) above. An explanatory account, for example, which is not explicit and
specific enough to be reasonably qualified as an elliptically formulated
explanation or as a partial one, can often be viewed as an explanation
sketch: it may suggest, perhaps quite vividly and persuasively, the general
outlines of what, it is hoped, can eventually be supplemented so as to yield
a more closely reasoned argument based on explanatory hypotheses which
are indicated more fully, and which more readily permit of critical ap-
praisal by reference to empirical evidence.

The decision whether a proposed explanatory account is to be qual-
ified as an elliptically formulated deductive or probabilistic explanation,
as a partial explanation, as an explanation sketch, or perhaps as none of
these is a matter of judicious interpretation; it calls for an appraisal of the



694 | Cn. 6 MopELS OF EXPLANATION

intent of the given argument and of the background assumptions that may
be assumed to have been tacitly taken for granted, or at least to be avail-
able, in the given context. Unequivocal decision rules cannot be set down
for this purpose any more than for determining whether a given informally
stated inference which is not deductively valid by reasonably strict stan-
dards is to count nevertheless as valid but enthymematically formulated,
or as fallacious, or as an instance of sound inductive reasoning, or perhaps,
for lack of clarity, as none of these. . . .

| |  Notes

1. See Dewey, John. How We Think. Boston, New York, Chicago, 1910; Chap-
ter VI,

2. For a fuller presentation of the model and for further references, see, for ex-
ample, Hempel, C. G. and P. Oppenheim, “Studies in the Logic of Explanation,”
Philosophy of Science 15: 135-175 (1948). (Secs. 1-7 of this article, which contain
all the fundamentals of the presentation, are reprinted in Feigl, H. and M. Brod-
beck (eds.), Readings in the Philosophy of Science. New York, 1953.)—The sug-
gestive term “covering law model” is W. Dray'’s; cf. his Laws and Explanation in
History. Oxford, 1957; Chapter 1. Dray characterizes this type of explanation as
“subsumning what is to be explained under a general law” (loc. cit., p. 1), and then
rightly urges, in the name of methodological realism, that “the requirement of a
single law be dropped” (loc. cit., p. 24; italics, the author’s): it should be noted,
however, that, like the schema (D) above, several earlier publications on the sub-
ject (among them the article mentioned at the beginning of this note) make ex-
plicit provision for the inclusion of more laws than one in the explanans.

3. The relevance of the coveringlaw model to causal explanation is examined
more fully in sec. 4 of Hempel, C. G., “Deductive-Nomological vs. Statistical
Explanation.” In Feigl, H., et al. (eds.), Minnesota Studies in the Philosophy of
Science, vol. III. Minneapolis, 1962.

4, The concept of probabilistic explanation, and some of the peculiar logical and
methodological problems engendered by it, are examined in some detail in Part
IT of the essay cited in note 3.

5. Freud, S. Psychopathology of Everyday Life. Translated by A. A. Brill. New York
(Mentor Books) 1951; p. 64.

CarL G. HEMPEL

The Thesis of
Structural Identity

Since in a fully stated D-N explanation of a particular event the expla-
nans logically implies the explanandum, we may say that the explanatory
argument might have been used for a deductive prediction of the
explanandum-event if the laws and the particular facts adduced in its ex-
planans had been known and taken into account at a suitable eatlier time.
In this sense, a D-N explanation is a potential D-N prediction.

This point was made already in an earlier article by Oppenheim and
myself,! where we added that scientific explanation (of the deductive-
nomological kind) differs from scientific prediction not in logical struc-
ture, but in certain pragmatic respects. In one case, the event described
in the conclusion is known to have occurred, and suitable statements of
general law and particular fact are sought to account for it; in the other,
the latter statements are given and the statement about the event in ques-
tion is derived from them before the time of its presumptive occurrence.
This conception, which has sometimes been referred to as the thesis of
the structural identity (or of the symmetry) of explanation and prediction,
has recently been questioned by several writers. A consideration of some
of their arguments may help to shed further light on the issues involved.

To begin with, some writers? have noted that what is usually called a
prediction is not an argument but a sentence. More precisely, as Scheffler
has pointed out, it is a sentence-token, i.e., a concrete utterance or in-
scription of a sentence purporting to describe some event that is to occur
after the production of the token.? This is certainly so. But in empirical
science predictive sentences are normally established on the basis of avail-
able information by means of arguments that may be deductive or induc-
tive in character; and the thesis under discussion should be understood,
of course, to refer to explanatory and predictive arguments.

Thus construed, the thesis of structural identity amounts to the con-

FroM Aspects of Scientific Explanation (New York: Free Press, 1965), 366-76.
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CarrL G. HEMPEL

Inductive-Statistical Explanation

1 |  Inductive-Statistical Explanation

As an explanation of why patient John Jones recovered from a streptococ-
cus infection, we might be told that Jones had been given penicillin. But
if we try to amplify this explanatory claim by indicating a general con-
nection between penicillin treatment and the subsiding of a streptococcus
infection we cannot justifiably invoke a general law to the effect that in
all cases of such infection, administration of penicillin will lead to recov-
ery. What can be asserted, and what surely is taken for granted here, is
only that penicillin will effect a cure in a high percentage of cases, or
with a high statistical probability. This statement has the general character
of a law of statistical form, and while the probability value is not specified,
the statement indicates that it is high. But in contrast to the cases of
deductive-nomological and deductive-statistical explanation, the explanans
consisting of this statistical law together with the statement that the patient
did receive penicillin obviously does not imply the explanandum state-
ment, ‘the patient recovered’, with deductive certainty, but only, as we
might say, with high likelihood, or near certainty. Briefly, then,. the expla-
nation amounts to this argument:

la The particular case of illness of John Jones—let us call it j—was
an instance of severe streptococcal infection (Sj) which was
treated with large doses of penicillin (Pj); and the statistical prob-
ability p(R, S - P) of recovery in cases where S and P are present
close to 1; hence, the case was practically certain to end in re-
covery (Rj).*

FroMm Aspects of Scientific Explanation (New York: Free Press, 1965), 381-83,
394-403.

* Throughout this paper, Hempel uses a dot to stand for conjunction, a bar over
a letter to stand for negation, and a comma within_parentheses to represent con-
ditional probabilities. Thus, for example, p(R, S*P) means the probability of R
given S and not-P.
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This argument might invite the following schematization:

1 p(R, S - P) is close to 1
Sj-Pj

(Therefore:) It is practically certain (very likely) that Rj

In the literature on inductive inference, arguments thus based on
statistical hypotheses have often been construed as having this form or a
similar one. On this construal, the conclusion characteristically contains
a modal qualifier such as ‘almost certainly,” ‘with high probability’, ‘very
likely’, etc. But the conception of arguments having this character is un-
tenable. For phrases of the form ‘it is practically certain that p or ‘It is
very likely that p’, where the place of p’ is taken by some statement, are
not complete self-contained sentences that can be qualified as either true
or false. The statement that takes the place of ‘p’—for example, ‘Rj’—is
either true or false, quite independently of whatever relevant evidence may
be available, but it can be qualified as more or less likely, probable, cer-
tain, or the like only relative to some body of evidence. One and the same
statement, such as ‘Rj’, will be certain, very likely, not very likely, highly
likely, and so forth, depending upon what evidence is considered. The
phrase ‘it is almost certain that Rj’ taken by itself is therefore neither true
nor false; and it cannot be inferred from the premises specified in (1b)
nor from any other statements.

The confusion underlying the schematization (1b) might be further
illuminated by considering its analogue for the case of deductive argu-
ments. The force of a deductive inference, such as that from ‘all F are
G’ and ‘a is F’ to ‘a is G’, is sometimes indicated by saying that if the
premises are true, then the conclusion is necessarily true or is certain to
be true—a phrasing that might suggest the schematization

All F are G
ais F

(Therefore:) It is necessary (certain) that a is G

But clearly the given premises—which might be, for example, ‘all men
are mortal” and ‘Socrates is a man’—do not establish the sentence ‘a is G’
(‘Socrates is mortal’) as a necessary or certain truth, The certainty referred
to in the informal paraphrase of the argument is relational: the statement
‘a is G’ is certain, or necessary, relative to the specified premises; i.e., their
truth will guarantee its truth—which means nothing more than that ‘a is
G’ is a logical consequence of those premises.

Analogously, to present our statistical explanation in the manner of
schema (1b) is to misconstrue the function of the words ‘almost certain’
or ‘very likely’ as they occur in the formal wording of the explanation.
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Those words clearly must be taken to indicate that on the evidence pro-
vided by the explanans, or relative to that evidence, the explanandum is
practically certain or very likely, i.e., that

le ‘Rj’ is practically certain (very likely) relative to the explana’ns
containing the sentences ‘p(R, S - P) is close to 1" and °Sj - Pj".!

The explanatory argument misrepresented by (1b) might therefore
suitably be schematized as follows:

1d p(R, S P)isclose to 1
Sj - bj

Rj

[makes practically certain]

In this schema, the double line separating the “premises” from the
“conclusion” is to signify that the relation of the former to the latter is
not that of deductive implication but that of inductive support, the strength
of which is indicated in square brackets.? . . .

2 |  The Problem of Explanatory Ambiguity

Consider once more the explanation (1d) of recovery in the particular
case j of John Jones’s illness. The statistical law there invoked claims re-
covery in response to penicillin only for a high percentage of streptococgil
infections, but not for all of them; and in fact, certain streptococcus strains
are resistant to penicillin. Let us say that an occurrence, e.g. a particular
case of illness, has the property S* (or belongs to the class S*).if it is an
instance of infection with a penicillin-resistant streptococcus strain, Then
the probability of recovery among randomly chosen instances of S* which
are treated with penicillin will be quite small, i.e, p(R, S* - P) will be
close to 0 and the probability of nonrecovery, p(R, S* - P) will be close
to 1. But suppose now that Jones’s illness is in fact a streptococcal infection
of the penicillin-resistant variety, and consider the following argument:

2a p(R, S* - P) is close to 1
S*j - Pj
Rj

[makes practically certain]

This “rival” argument has the same form as (1d), and on our assumptions,
its premises are true, just like those of (1d). Yet its conclusion is the
contradictory of the conclusion of (1d).

Or suppose that Jones is an octogenarian with a weak heart, and that
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in this group, S**, the probability of recovery from a streptococcus infec-

_tion in response to penicillin treatment, p(R, S** - P), is quite small.

Then, there is the following rival argument to (1d), which presents Jones's
nonrecovery as practically certain in the light of premises which are true:

2b  p(R, S** - P) is close to 1
%% - Pj
Rj

[makes practically certain]

The peculiar logical phenomenon here illustrated will be called the am-
biguity of inductive-statistical explanation or, briefly, of statistical expla-
nation. This ambiguity derives from the fact that a given individual event
(e.g., Jones’s illness) will often be obtainable by random selection from
any one of several “reference classes” (such as S - P, S* - P, S** - P), with
respect to which the kind of occurrence (e.g., R) instantiated by the given
event has very different statistical probabilities. Hence, for a proposed prob-
abilistic explanation with true explanans which confers near certainty upon
a particular event, there will often exist a rival argument of the same
probabilistic form and with equally true premises which confers near cer-
tainty upon the nonoccurrence of the same event. And any statistical ex-
planation for the occurrence of an event must seem suspect if there is the
possibility of a logically and empirically equally sound probabilistic ac-
count for its nonoccurrence. This predicament has no analogue in the case
of deductive explanation; for if the premises of a proposed deductive ex-
planation are true then so is its conclusion; and its contradictory, being
false, cannot be a logical consequence of a rival set of premises that are
equally true.

Here is another example of the ambiguity of I-S explanation: Upon
expressing surprise at finding the weather in Stanford warm and sunny on
a date as autumnal as November 27, I might be told, by way of explana-
tion, that this was rather to be expected because the probability of warm
and sunny weather (W) on a November day in Stanford (N) is, say, .95.
Schematically, this account would take the following form, where n’
stands for ‘November 27":

2¢ p(W, N) =95
Nn

Wn

[.95]

But suppose it happens to be the case that the day before, Novem-
ber 26, was cold and rainy, and that the probability for the immediate
successors (S) of cold and rainy days in Stanford to be warm and sunny is
.2; then the account (2¢) has a rival in the following argument which,
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by reference to equally true premises, presents it as fairly certain that
November 27 is not warm and sunny:

2d p(W, S) =38
Sn

= [.8]
Wn

In this form, the problem of ambiguity concerns I-3 arguments whose
premises are in fact true, no matter whether we are aware of this or not.
But, as will now be shown, the problem has a variant that concerns ex-
planations whose explanans statements, no matter whether in fact true or
not, are asserted or accepted by empirical science at the time when the
explanation is proffered or contemplated. This variant will be callled the
problem of the epistemic ambiguity of statistical explanation, since it refers
to what is presumed to be known in science rather than to what, perhaps
unknown to anyone, is in fact the case. N

Let K, be the class of all statements asserted or accepted by empirical
science at time t. This class then represents the total scientific information,
or “scientific knowledge” at time t. The word ‘knowledge’ is here used in
the sense in which we commonly speak of the scientific knowledge at a
given time. It is not meant to convey the claim that the elements of K,
are true, and hence neither that they are definitely known to be true. No
such claim can justifiably be made for any of the statements established
by empirical science; and the basic standards of scientific inquiry demand
that an empirical statement, however well supported, be accepted and thus
admitted to membership in K, only tentatively, i.e., with the understanding
that the privilege may be withdrawn if unfavorable evidence should be
discovered. The membership of K, therefore changes in the course of time;
for as a result of continuing research, new statements are admitted into
that class; others may come to be discredited and dropped. Henceforth,
the class of accepted statements will be referred to simply as K when
specific reference to the time in question is not required. We .will assurne
that K is logically consistent and that it is closed under logical 1rnphcat10'n,
i.e., that it contains every statement that is logically implied by any of its
subsets.

The epistemic ambiguity of I-S explanation can now be characterized
as follows: The total set K of accepted scientific statements contains dif-
ferent subsets of statements which can be used as premises in arguments
of the probabilistic form just considered, and which confer high proba-
bilities on logically contradictory “conclusions.” Our earlier example§ (2a),
(2b) and (2¢), (2d) illustrate this point if we assume that the premises of
those arguments all belong to K rather than that they are all true. If one
of two such rival arguments with premises in K is proposed as an expla-
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nation of an event considered, or acknowledged, in science to have oc-
curred, then the conclusion of the argument, i.e., the explanandum
“statement, will accordingly belong to K as well. And since K is consistent,
the conclusion of the rival argument will not belong to K. Nonetheless
it is disquieting that we should be able to say: No matter whether we
are informed that the event in question (e.g. warm and sunny weather on
November 27 in Stanford) did occur or that it did not occur, we can
produce an explanation of the reported outcome in either case; and an
explanation, moreover, whose premises are scientifically established state-
ments that confer a high logical probability upon the reported outcome.

This epistemic ambiguity, again, has no analogue for deductive ex-
planation; for since K is logically consistent, it cannot contain premise-
sets that imply logically contradictory conclusions.

Epistemic ambiguity also bedevils the predictive use of statistical ar-
guments. Here, it has the alarming aspect of presenting us with two rival
arguments whose premises are scientifically well established, but one of
which characterizes a contemplated future occurrence as practically cer-
tain, whereas the other characterizes it as practically impossible. Which

of such conflicting arguments, if any, are rationally to be relied on for
explanation or for prediction?

3 |  The Requirement of Maximal Specificity and the
Epistemic Relativity of Inductive-Statistical
Explanation

Our illustrations of explanatory ambiguity suggest that a decision on the
acceptability of a proposed probabilistic explanation or prediction will have
to be made in the light of all the relevant information at our disposal.
This is indicated also by a general principle whose importance for induc-
tive reasoning has been acknowledged, if not always very explicitly, by
many writers, and which has recently been strongly emphasized by Car-
nap, who calls it the requirement of total evidence. Carnap formulates it as
follows: “in the application of inductive logic to a given knowledge situ-
ation, the total evidence available must be taken as basis for determining
the degree of confirmation.”? Using only a part of the total evidence is
permissible if the balance of the evidence is irrelevant to the inductive
“conclusion,” i.e., if on the partial evidence alone, the conclusion has the
same confirmation, or logical probability, as on the total evidence.*

The requirement of total evidence is not a postulate nor a theorem
of inductive logic; it is not concerned with the formal validity of inductive
arguments. Rather, as Carnap has stressed, it is a maxim for the application
of inductive logic; we might say that it states a necessary condition of
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rationality of any such application in a given “knowledge situation,” whic‘h
we will think of as represented by the set K of all statements accepted in
the situation.

But in what manner should the basic idea of this requirement be
brought to bear upon probabilistic explanation? Surely we .shoulld not insist
that the explanans must contain all and only the empirical mformahgn
available at the time. Not all the available information, because otherwise
all probabilistic explanations acceptable at time ¢ Would hgve to have the
same explanans, K,; and not only the available lnformatlon,' because a
proffered explanation may meet the intent of the requirement in not over-
looking any relevant information available, and may neverthfaless invoke
some explanans statements which have not as yet been sufficiently tested
to be included in K,.

The extent to which the requirement of total. evidence should be
imposed upon statistical explanations is suggested by considerations such
as the following. A proffered explanation of Jones’s recovery based on the
information that Jones had a streptococcal infection and was treated with
penicillin, and that the statistical probability for recovery i{] such cases i,s
very high, is unacceptable if K includes the further information that ]onés s
streptococci were resistant to penicillin, or that Jones was an octogenarian
with a weak heart, and that in these reference classes the probability of
recovery is small. Indeed, one would want an acceptable explanation to
be based on a statistical probability statement pertaining to the narrowest
reference class of which, according to our total information, the particular
occurrence under consideration is a member. Thus, if K tells us not only
that Jones had a streptococcus infection and was treated with penicil.lin,
but also that he was an octogenarian with a weak heart (and if K provides
no information more specific than that) then we would require that an
acceptable explanation of Jones's response to the treatment be based on a
statistical law stating the probability of that response in the narrowest ref-
erence class to which our total information assigns Jones’s illness, i.c., the
class of streptococcal infections suffered by octogenarians with weak
hearts.® ‘

Let me amplify this suggestion by reference to an example concerning
the use of the law that the half-life of radon is 3.82 days in accounting for
the fact that the residual amount of radon to which a sample of 10 mil-
ligrams was reduced in 7.64 days was within the range from 2.4 to 2.6
milligrams. According to present scientific knowledge, the rate of decay
of a radioactive element depends solely upon its atomic structure as char-
acterized by its atomic number and its mass number, and it is thus un-
affected by the age of the sample and by such factors as temperature,
pressure, magnetic and electric forces, and chemical interactions. Thus,
by specifying the halflife of radon as well as the initial mass of the sample
and the time interval in question, the explanans takes into account all the
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available information that is relevant to appraising the probability of the

_ given outcome by means of statistical laws. To state the point somewhat

differently: Under the circumstances here assumed, our total information
K assigns the case under study first of all to the reference class say F,, of
cases where a 10 milligram sample of radon is allowed to decay for 7.64
days; and the half-life law for radon assigns a very high probability, within
F,, to the “outcome,” say G, consisting in the fact that the residual mass
of radon lies between 2.4 and 2.6 milligrams. Suppose now that K also
contains information about the temperature of the given sample, the pres-
sure and relative humidity under which it is kept, the surrounding electric
and magnetic conditions, and so forth, so that K assigns the given case to
a reference class much narrower than F), let us say, F\F,F; . . . F,. Now
the theory of radioactive decay, which is equally included in K, tells us
that the statistical probability of G within this narrower class is the same
as within G. For this reason, it suffices in our explanation to rely on the
probability p(G, F,).

Let us note, however, that “knowledge situations” are conceivable in
which the same argument would not be an acceptable explanation. Sup-
pose, for example, that in the case of the radon sample under study, the
amount remaining one hour before the end of the 7.64 day period hap-
pens to have been measured and found to be 2.7 milligrams, and thus
markedly in excess of 2.6 milligrams—an occurrence which, considering
the decay law for radon, is highly improbable, but not impossible. That
finding, which then forms part of the total evidence K, assigns the partic-
ular case at hand to a reference class, say F*, within which, according to
the decay law for radon, the outcome G is highly improbable since it
would require a quite unusual spurt in the decay of the given sample to
reduce the 2.7 milligrams, within the one final hour of the test, to an
amount falling between 2.4 and 2.6 milligrams. Hence, the additional
information here considered may not be disregarded, and an explanation
of the observed outcome will be acceptable only if it takes account of the
probability of G in the narrower reference class, ie., p(G, F\F*). (The
theory of radioactive decay implies that this probability equals p(G, F*),
so that as a consequence the membership of the given case in F, need
not be explicitly taken into account.)

The requirement suggested by the preceding considerations can now
be stated more explicitly; we will call it the requirement of maximal spec-
ificity for inductive-statistical explanations. Consider a proposed explana-
tion of the basic statistical form

3a p(G, F)=r
Fb

Gb

]
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Let s be the conjunction of the premises, and, if K is the' set gf all
statements accepted at the given time, let k be a sentence 'that is lc?glca.lly
equivalent to K (in the sense that k is implied by K and in turn 1mp(lixes
every sentence in K). Then, to be rationally acceptable in the knowle Ee
situation represented by K, the proposed explianatlon (.3a)‘rnust meetf( e
following condition (the requirement of maxunal' specificity): If s - k im-
plies that b belongs to a class I, and that F, is a .subclass of F, then
s+ k must also imply a statement specifying the statistical probability of G
in Fy, say

p(G, Fi) =n

Here, r, must equal r unless the probability statement just cited is simply
a theorem of mathematical probability theory. o .

The qualifying unless-clause here appended is quite proper, and its
omission would result in undesirable consequences. It is proper because
theorems of pure mathematical probability theory cannot provl.de an ex-
planation of empirical subject matter. They may thgrefore be dlscm'lnf(ed
when we inquire whether s - k might not give us statistical laws specxfyu?g
the probability of G in reference classes narrower than F . And the omis-
sion of the clause would prove troublesome, for if (3a) is proffered as an
explanation, then it is presumably accepted as a fact that Gb; hence Gb
belongs to K. Thus K assigns b to the narrower c?ass F -G, and concerning
the probability of G in that class, s - k trivially implies the statement t.hat
p(G, F - G) = 1, which is simply a consequence of t.he H'leasure-theoretl'cal
postulates for statistical probability. Since s - k thus implies a more specific
probability statement for G than that invoked in (3a), the requirement of
maximal specificity would be violated by (3a)— and analogously by any
proffered statistical explanation of an event‘ that. we take . to have
occurred—were it not for the unless-clause, which, in effect, dlsquah'ﬁes
the notion that the statement ‘p(G, F - G) = 1’ affords a more appropriate
law to account for the presumed fact that Gb. . ’

The requirement of maximal specificity, then, is herfe tentatively put
forward as characterizing the extent to which the reql.nrement of total
evidence properly applies to inductive-statistical éxplanatlons. TF‘he general
idea thus suggested comes to this: In formulatlr.lg or appraising an I-S
explanation, we should take into account all that information provided by
K which is of potential explanatory relevance to ’the explanandurn’ event;
i.e., all pertinent statistical laws, and such particular facts as 7rmght be
connected, by the statistical laws, with the expl:flnandum event.

The requirement of maximal specificity disposes of the pr(_)b.lem of
epistemic ambiguity; for it is readily seen that of two nvzjll statistical ar-
guments with high associated probabilities and with premises that gll be—
long to K, at least one violates the requirement of maximum specificity.
Indeed, let
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p(G7 F):rl P(C—;r H):rZ
Fb Hb
1] and  =—————— [1,]
Gb Gb

be the arguments in question, with r, and r, close to 1. Then, since K
contains the premises of both arguments, it assigns b to both F and H and
hence to F - H. Hence if both arguments satisfy the requiremnent of max-
imal specificity, K must imply that

p(G:F'H):P(Q,F>:T1
p(C)FH): (G_7H):r2
But p(G, F-H)+p(C F H)=1

Hence v +r,=1

and this is an arithmetic falsehood, since 7, and r, are both close to 1;
hence it cannot be implied by the consistent class K.

Thus, for I-S explanations that meet the requirement of maximal spec-
ificity the problem of epistemic ambiguity no longer arises. We are never
in a position to say: No matter whether this particular event did or did
not occur, we can produce an acceptable explanation of either outcome;
and an explanation, moreover, whose premises are scientifically accepted
statements which confer a high logical probability upon the given out-
come,

While the problem of epistemic ambiguity has thus been resolved,
ambiguity in the first sense discussed [in section 2] remains unaffected by
our requirement; i.e., it remains the case that for a given statistical argu-
ment with true premises and a high associated probability, there may exist
a rival one with equally true premises and with a high associated proba-
bility, whose conclusion contradicts that of the first argument. And though
the set K of statements accepted at any time never includes all statements
that are in fact true (and no doubt many that are false), it is perfectly
possible that K should contain the premises of two such conflicting ar-
guments; but as we have seen, at least one of the latter will fail to be
rationally acceptable because it violates the requirement of maximal
specificity.

The preceding considerations show that the concept of statistical ex-
planation for particular events is essentially relative to a given knowledge
situation as represented by a class K of accepted statements. Indeed, the
requirement of maximal specificity makes explicit and unavoidable refer-
ence to such a class, and it thus serves to characterize the concept of
“I-S explanation relative to the knowledge situation represented by K.”
We will refer to this characteristic as the epistemic relativity of statistical
explanation.

It might seem that the concept of deductive explanation possesses the
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same kind of relativity, since whether a proposed D-N or D-S [deduct‘iw.e-
statistical| account is acceptable will depend not only on whether it is
deductively valid and makes essential use of the proper type of general
Jaw, but also on whether its premises are well supported by the relevgnt
evidence at hand. Quite so; and this condition of empirical conﬁrma‘t;on
applies equally to statistical explanations thgt are t.o‘be acceptable in a
given knowledge situation. But the episternic relatlylty that the.reqmr‘e—
ment of maximal specificity implies for I-S explanations is of quite a d.1f-
ferent kind and has no analogue for D-N explanations. For the specificity
requirement is not concerned with the evidential support that the total
evidence K affords for the explanans statements: it does not demar‘ld that
the latter be included in K, nor even that K supply supporting e\rldenFe
for them. Tt rather concerns what may be called the concept of a pf)tentz‘al
statistical explanation. For it stipulates that no matter how much é\qd‘entuﬂ
support there may be for the explanans, a proposed I-S explanation is not
acceptable if its potential explanatory force Wl'th respect to the §pec1ﬁed
explanandum is vitiated by statistical laws which are lnclude‘d in K 'but
not in the explanans, and which might permit the productxhon of rival
statistical arguments. As we have seen, this dgnger never arises fo'r c}e-
ductive explanations. Hence, these are not subject to any spch restrictive
condition, and the notion of a potential deductive explanation (as contra-
distinguished from a deductive explanation with well-confirmed expla-
nans) requires no relativization with respect to K.

As a consequence, we can significantly speak of true D-N and D-S
explanations: they are those potential D-N and D-S explanations whos'e
premises (and hence also conclusions) are true—no matter whether this
happens to be known or believed, and thus no matter whether the prem-
ises are included in K. But this idea has no significant analogue for.I-S
explanation since, as we have seen, the concept of potential statistical
explanation requires relativization with respect to K.

[ | Notes

1. Phrases such as ‘It is almost certain (very likely) that j recovers’, even.when
given the relational construal here suggested, are ostensibly concerned with re-
lations between propositions, such as those expressed by the sentences form-
ing the conclusion and the premises of an argument.‘f‘or the purpose of
the present discussion, however, involvement with propos'ltlons can be avoided
by construing the phrases in question as expressing logical relatlo.ns between
corresponding sentences, e.g., the conclusion-sentence and th'e prermse-senfence
of an argument. This construal, which underlies the formulation of (1'(:), will be
adopted in this essay, though for the sake of convenience we may occasionally use

a paraphrase.
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2. In the familiar schematization of deductive arguments, with a single line sep-
arating the premises from the conclusion, no explicit distinction is made between
a weaker and a stronger claim, either of which might be intended; namely
(i) that the premises logically imply the conclusion and (ii) that, in addition, the
premises are true. In the case of our probabilistic argument, (Ic) expresses a
weaker claim, analogous to (i), whereas (1d) may be taken to express a “proffered
explanation” (the term is borrowed from I. Scheffler, ‘Explanation, Prediction, and
Abstraction’, British Journal for the Philosophy of Science 7 (1957), sect. 1) in
which, in addition, the explanatory premises are—however tentatively—asserted as
true.

The considerations here outlined concerning the use of terms like ‘probably’
and ‘certainly’ as modal qualifiers of individual statements seem to me to militate
also against the notion of categorical probability statement that C. I Lewis sets
forth in the following passage (italics the author’s):

Just as ‘If D then (certainly) P, and D is the fact’, leads to the categorical consequence,
“Therefore (certainly) P’; so too, ‘If D then probably P, and D is the fact’, leads to a
categorical consequence expressed by ‘It is probable that P’. And this conclusion is not
merely the statement over again of the probability relation between ‘P” and ‘D’; any
more than “Therefore (certainly) P is the statement over again of ‘If D then (certainly)
P’.'If the barometer is high, tomorrow will probably be fair; and the barometer is high’,
categorically assures something expressed by ‘Tomorrow will probably be fair’. This
probability is still relative to the grounds of judgment; but if these grounds are actual,
and contain all the available evidence which is pertinent, then it is not only categorical
but may fairly be called the probability of the event in question (1946; 319)

This position seems to me to be open to just those objections suggested in
the main text. If P’ is a statement, then the expressions ‘certainly P’ and ‘probably
P’ as envisaged in the quoted passage are not statements. If we ask how one would
go about trying to ascertain whether they were true, we realize that we are entirely
at a loss unless and until a reference set of statements or assumptions has been
specified relative to which P may then be found to be certain, or to be highly
probable, or neither. The expressions in question, then, are essentially incomplete;
they are elliptic formulations of relational statements; neither of them can be the
conclusion of an inference. However plausible Lewis’s suggestion may seem, there
is no analogue in inductive logic to modus ponens, or the “rule of detachment,”
of deductive logic, which, given the information that ‘D’ and also ‘if D then P’
are true statements, authorizes us to detach the consequent ‘P’ in the conditional
premise and to assert it as a self-contained statement which must then be true as
well.

At the end of the quoted passage, Lewis suggests the important idea that
‘probably P’ might be taken to mean that the total relevant evidence available at
the time confers high probability upon P. But even this statement is relational in
that it tacitly refers to some unspecified time, and, besides, his general notion of
a categorical probability statement as a conclusion of an argument is not made
dependent on the assumption that the premises of the argument include all the
relevant evidence available,

It must be stressed, however, that elsewhere in his discussion, Lewis empha-
sizes the relativity of (logical) probability, and, thus, the very characteristic that
rules out the conception of categorical probability statements.

Similar objections apply, I think, to Toulmin’s construal of probabilistic ar-
guments; cf. Toulmin (1958) and the discussion in Hempel (1960), sects. 1-3,
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3. R. Carnap, Logical Foundations of Probability (Chicago, 1950), 211. The re-
quirement is suggested, ¢.g., in the passage from Lewis quoted in n. [2]. Similarly
Williams speaks of “the most fundamental of all rules of probability logic, that
‘the’ probability of any proposition is its probability in relation to the known prem-
ises and them only” (The Ground of Induction (Cambridge, Mass., 1947), 72).

I am greatly indebted to Professor Carnap for having pointed out to me in
1945, when I first noticed the ambiguity of probabilistic arguments, that this was
but one of several apparent paradoxes of inductive logic that result from disregard
of the requirement of total evidence.

S. F. Barker, Induction and Hypothesis (Ithaca, NY, 1957), 70-78, has given
a lucid independent presentation of the basic ambiguity of probabilistic arguments,
and a skeptical appraisal of the requirement of total evidence as a means of dealing
with the problem. However, I will presently suggest a way of remedying the am-
biguity of probabilistic explanation with the help of a rather severely modified
version of the requirement of total evidence. It will be called the requirement of
maximal specificity, and is not open to the same criticism.

4, Cf. Camap, Logical Foundations, 211 and 494.

5. This idea is closely related to one used by H. Reichenbach, (cf. The Theory of
Probability (Berkeley, Calif., and Los Angeles, 1949), sect. 72) in an attempt to
show that it is possible to assign probabilities to individual events within the frame-
work of a strictly statistical conception of probability. Reichenbach proposed that
the probability of a single event, such as the safe completion of a particular sched-
uled flight of a given commercial plane, be construed as the statistical probability
which the kind of event considered (safe completion of a flight) possesses within
the narrowest reference class to which the given case (the specified flight of the
given plane) belongs, and for which reliable statistical information is available (e.g.,
the class of scheduled flights undertaken so far by planes of the line to which the
given plane belongs, and under weather conditions similar to those prevailing at
the time of the flight in question).

6. Reference to s - k rather than to k is called for because, as was noted earlier,
we do not construe the condition here under discussion as requiring that all the
explanans statements invoked be scientifically accepted at the time in question,
and thus be included in the corresponding class K.

7. By its reliance on this general idea, and specifically on the requirement of
maximal specificily, the method here suggested for eliminating the epistemic am-
biguity of statistical explanation differs substantially from the way in which I at-
tempted in an eartlier study (Hempel, ‘Deductive-Nomological vs. Statistical
Explanation’, esp. sect. 10) to deal with the same problem. In that study, which
did not distinguish explicitly between the two types of explanatory ambiguity char-
acterized eatlier in this section, I applied the requirement of total evidence to
statistical explanations in a manner which presupposed that the explanans of any
acceptable explanation belongs to the class K, and which then demanded that the
probability which the explanans confers upon the explanandum be equal to that
which the total evidence, K, imparts to the explanandum. The reasons why this
approach seems unsatisfactory to me are suggested by the arguments set forth in
the present section. Note in particular that, if strictly enforced, the requirement
of total evidence would preclude the possibility of any significant statistical expla-

HEMPEL @ INDUCTIVE-STATISTICAL EXPLANATION | 719

nation for events whose occurrence is regarded as an established fact in science:

. for any sentence describing such an occurrence is logically implied by K and thus

trivially has the logical probability 1 relative to K.
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